Civil3D


The idea for this post comes from an email from a client. Matthew has a large Reinforced Concrete Box (RCB) storm sewer system running down a street with inlets adjacent to it. For this project, they aren’t putting in a structure each time an inlet connects to the RCB, they’re just going to cut a hole in the side of the box, and attach the pipe from the inlet. The question then comes, how do you display where the pipes connect to the RCB in the profile view of the mainline?

The following video will show you the steps. For a summary of what I did, scroll past the video.

The basic process here is to create a null structure that will be displayed in the profile view as the outline of the pipe and then draw the null structures in the profile view. The video shows how I set up the styles.

Hope you enjoy. If you have any suggestions for other topics, feel free to drop me a line!

 

Advertisements

The 2018 versions of the Autodesk programs have been out for a while now. You have a point cloud and you need to create a surface from it. Well, if you have the AEC collection, you have two options, 1) Create the surface in Civil 3D or 2) Create the surface in InfraWorks. Which one should you use?

I was working with a client recently that had this very same dilemma so I decided to do a little testing to see how well each option does creating the surfaces. To give a little bit of background on the data set, the point cloud contains around 90 million points and is an agricultural field with a stream running through the middle of it.

Overall_Point_Cloud

Overall Point Cloud in ReCap

This dataset is kind of unique as it has areas that are very flat and fairly consistent as well as areas that vary quite a bit. Creating a single surface in Civil 3D from 90 million points would take a massive amount of time (if it was even possible) so I decided to test this on a smaller scale. I cut out a couple portions of the point cloud, one in the area of the field and one in the area of the stream.

Let’s get to creating the surfaces. I created the surfaces for both areas using both Civil 3D and InfraWorks. In both programs, I maxed out the settings to get the best possible surfaces.

Creating The Surface in InfraWorks

How is this done in InfraWorks? First, I created a new model and imported the ReCap file. Once the point cloud is in the model, I used the command, “Point Cloud Terrain”. This can be found on the “Build, manage, and analyze your infrastructure model” section (Big Orange “I”), and then the “Create and manage your model” (Q-bert looking button).

Terrain_Command_InfraWorks

Point Cloud Terrain Command

The settings I used for generating the terrain can be seen in the following image. I basically set them to give me the best possible terrain I could get from the data. Once I created the surface, I then imported the surface into Civil 3D.

InfraWorks_Point_Cloud_Terrain_Settings

InfraWorks Point Cloud Terrain Settings

Creating the Surface in Civil 3D

To create a surface in Civil 3D 2018, just like with InfraWorks, you must first import the point cloud. On the Insert tab of the ribbon, you can simply attach the ReCap file. Once the point cloud is in the drawing, select it and, on the contextual ribbon tab, choose the command, “Create Surface from Point Cloud”.

Create_Surface_Command_Location

Command to Create Surface from Point Cloud in Civil 3D

Just like with InfraWorks, I created these surfaces so they would max out the data that was available. In the command, I did not change the settings for the number of points being used or the area to use (I had already cropped out smaller areas from the overall point cloud in ReCap). The only settings I changed that would affect the data was on the  Non-Ground Point Filtering section, where I changed it to use the Kriging interpolation filter method.

Kriging_Interpolation

Filter Method set to Kriging Interpolation

How do they compare?

To compare them, I brought the two surfaces for each area into a drawing and then created a volume surface between them. This allowed me to see what the elevation differences were between the two surfaces. I then did an elevation analysis on the volume surface so I can see where these differences are.

The Field

The first one I did was for the area of the field.

Plain_Comparison

Comparison of Surfaces in the Field

If you look at the numbers, you can see that over 96% of the surfaces are within 0.1′ of each other and over 99.8% are within 0.2′. This is really good! If I zoom in on the area of the contours (they are 1′ contours by the way, you can see a little bit more detail.

Plain_Contours

Field Contours

The blue contours are from the surface created in Civil 3D whereas the red contours are from the surface created in InfraWorks. One final comparison, lets look at the data density of the two surfaces. How many points are in each of these surfaces?

  • Civil 3D Surface – 356,420 points
  • InfraWorks Surface – 9,993 points

To be fair, I could have decreased the number of points as I was creating the Civil 3D surface but, I maxed out the settings in InfraWorks.

The Stream

I repeated the process for the area around the stream.

Stream_Comparison

Comparison of Surfaces at the Stream

As you can see, the numbers aren’t quite as good here. In fact, there are areas that are off by up to 8′. I did a similar comparison based on these numbers and found that almost 97% of the surface was within 2′ and almost 99% was within 4′. This isn’t a fair comparison so I reran the analysis using basically the same numbers as for the field (0.1′ increments) but I lumped everything beyond 0.4′ into the same category. This is what I found:

Stream_Comparison_-_2

Surface Comparison with 0.1′ Increments

Once again, I ran the numbers and found that 83% was within 0.1′ and 89% was within 0.2′. A little concerning was the fact that over 6.7% was more than 0.4′ off.

Let’s go ahead and zoom in on the contours (again, the blue contours are the Civil 3D surface and the red contours are the InfraWorks surface). I displayed it with and without the volume surface because it was difficult to see all the contours at times.

Stream_Contours

Stream Contours

The comparison in size between the two surfaces are:

  • Civil 3D Surface: 773,732 points
  • InfraWorks Surface: 24,474 points

I don’t know how to increase the accuracy of the surface created from InfraWorks any more than it is.

Final Thoughts

Based on the results I’ve received here, which method would I use? Well, if the area is fairly flat and consistent (the field in this example), I would probably go with the InfraWorks surface. If there is a lot of inconsistencies in the data (the stream in this example), I would probably go with the Civil 3D surface.

Remember, you can create an overall surface in InfraWorks, create surfaces in Civil 3D for those areas that it’s needed, and then paste them all together at the end.

What are your thoughts? Have you had much experience with surfaces from point clouds in InfraWorks, Civil 3D, something else all together? Did I get something wrong? Let me know what you think in the comments!

I have a client that I recently showed the COGO Editor to in Civil 3D 2017 and he’s upgraded to Civil 3D 2018. I got a call from him asking where the tool was. I told him where to find it and he tells me it’s no longer there.

So, of course I don’t believe him, I open up 2018, and sure enough, it’s not there. In the following image, you can see the Civil 3D 2017 ribbon on the left and the Civil 3D 2018 ribbon on the right (this is the Analyze panel on the Survey ribbon tab):

2017 vs 2018 Ribbon

C3D 2017 vs C3D 2018 Menu

As you can see, the 2018 ribbon does not have the Coordinate Geometry Editor option. If you didn’t know this, you can click on the Application Menu (that’s the Big Blue A in the top left of the application), start typing a command, and it will show you were it is on the ribbon. In 2017, it shows that it’s on the ribbon, in 2018, it shows nothing.

2017 vs 2018 App Menu

C3D 2017 vs C3D 2018 Application Menu

I’m not sure why this tool was pulled from the menu (the Application Menu doesn’t even show it as a command) but, if you type COGOEDITOR at the command line, you can still access the tool.

COGO_Editor_in_2018

Coordinate Geometry Editor in Civil 3D 2018

The Autodesk River and Flood Analysis Module 2018 (aka River Analysis) has just recently been released and has some major fixes that will be very welcomed by anyone who uses this program. In the past there were a few bugs that were extremely annoying that no longer exist. Keep reading to learn what they were. If you aren’t moving to 2018, but you’re still using the River Analysis tools, make sure to read this so you know what to be aware of!

Deleted Last Entity Created

When the River Analysis tools are initialized in a drawing, the last object in the drawing that was created was deleted. That’s right, whatever that last object was – a line, a circle, a surface, an alignment – whatever it was, it was deleted. This is no longer an issue in 2018!

If you’re using 2017 or earlier, my recommendation is to draw a line in your file immediately prior to issuing any River Analysis tool so you know which object will be deleted.

New Reaches Automatically Created

Once the River Analysis tools were initialized any drawing used in Civil 3D after that moment would have a new reach created in it. The symbol for the reach would be placed near 0,0 so it destroys the ability to zoom extents. Not only that, since River Analysis is now initialized in this drawing, it deletes the last entity created. 2018 has fixed this problem!

If you are using 2017 or earlier, my recommendation is to run Civil 3D only for the River Analysis task you have. Don’t open any other drawings. Once you are done with the River Analysis task, close Civil 3D and reopen it and you should be good to go. If you initialize River Analysis again, you’ll need to close and reopen Civil 3D again to prevent it from creating reaches and deleting objects.

Reach Drop-down Inconsistent

The drop-down to select the reach you want to work on has been inconsistent at best. Sometimes it works, and sometimes it doesn’t show up at all. I was never able to figure out a decent work around for that one. In 2018, I haven’t seen any issues with the drop-down not behaving the way it should.

Where to get it?

If you haven’t been using River Analysis but want to, you can install it from the Autodesk Desktop Application. If you don’t have access to this, you can also go to manage.autodesk.com, log into your account, and download it (provided you have the permissions to download and install). Otherwise, ask your software manager or IT department for it.

Wrap Up

If you are using the River Analysis tools, you would be doing yourself a favor and doing the work in Civil 3D 2018. Even if the rest of the project is on a prior version, still do your River Analysis work in 2018, export out the HEC-RAS file, and then import it into a prior version if needed.

This came up in the discussion groups today, a user has a set of points that he needs to create a surface from but the points also have a depth value. He wants to create an additional surface below the original surface but at the depth below as recorded in the point (the depth is not constant, it changes for each point). For example, point 1 is at elevation 100 and has a depth of .55′, point 2 is at elevation 101 and has a depth of .48. The elevations of the first surface would be 100 at point 1 and 101 at point 2. The elevations of the second surface would be 99.45 at point 1 and 100.52 at point 2.

To do this, we’ll need to import the points twice (I would recommend doing this in two separate drawings and then data referencing the surfaces together), once at the original elevation and once at the adjusted elevation. Importing the original points is not a big deal and you can find all sorts of information on how to do this online so I’ll skip it here.

To do the elevation adjustment, we’ll need to know something about the point file. In the example I’m using here, I have a .txt file that is comma delimited and looks like the following:
1,5000, 5000,100,GND,-.55
2,5001,5001,101,GND,-.48

The format of this is very common, PNEZD (Point, Northing, Easting, Elevation, Description) but it has the added value of depth to it. We need to create a new Point File Format to import this data. On the settings tab of the prospector, expand out Points, right click on Point File Formats, and choose New. The format type you want is User Point File.

New_Point_File_Format.png

New Point File Format

After you choose In the new point file format, you’ll need to name the format, set up the columns to match the data that you have, and indicate how the file is delimited (a comma in this example). The PNEZD part is pretty straight forward (if you aren’t sure about it, check out one of the other point file formats that come with Civil 3D) but we need to add a column for the depth. The depth will depend on the how the data was collected. In my example, I have a negative sign indicating that the value is to go down so I’ll use the Z+ value. If the value is listed positive and you want it to go down, you’ll need to choose the Z- value.

 

Point_File_Format_Settings.png

Point File Format Settings

Now that we’ve done this, we can import the points. In order for the point elevations to be adjusted, we need to tell Civil 3D to actually adjust the elevations. On the Import Points dialog box, down towards the bottom in the advanced options section, there is an option to do elevation adjustments if possible. Makes sure this is toggled on and your points will come in at the adjusted elevations.

Import_Point_Settings.png

Import Points Settings

The following image shows the results of bringing in the same point file once using the elevation adjustment (on the right) and a second time bringing it in without the elevation adjustment (on the left):

Imported Points.png

With (right) and Without (left) Elevations Adjustments

Hope this helps out and let me know how you are using this. I would really like to know what you’re doing with it!

Creating custom parts for your storm sewer or sanitary sewer networks in Civil 3D is not fun. If you’ve ever had to go into Part Builder, you know what I’m talking about; secret variables, odd objects (what’s a COL object anyways?), and sometimes things just don’t work (haven’t been able to create a cut plane in Part Builder in almost a decade). Most of the time when people need to create a new part for a network in Civil 3D, they end up saying, “Whatever is already there, is probably close enough and I’ll just use that instead of doing it right.”

I have good news for you. In the latest version of InfraWorks (InfraWorks 2018.1) there is a new tool called the Project Infrastructure Parts Editor.

Infrastructure Parts Editor.png

Infrastructure Parts Editor in InfraWorks 2018.1

The Infrastructure Parts Editor has been around for quite a while in the Autodesk Labs (it was known as Project Kameleon, yes, with a K) but has recently graduated from labs and is now a full blown program. This tool will allow you to create new parts for use with InfraWorks as well as Civil 3D.

To access the new tool, within InfraWorks click on the drainage tools, then click the pencil drawing a line, and then click on the button for the “Parts Editor”.

Tool in InfraWorks.png

Where to find the Infrastructure Parts Editor in InfraWorks 2018.1

This will then open up an external application called, you guessed it, the Infrastructure Parts Editor.

Application Image.png

Infrastructure Parts Editor

How easy is this? Basically, it’s just pick and choose the parts you want to use. When you create a new catalog (or edit an existing one), you’ll see three options, Assembly, Structure, and Culvert. The parts that will be used in Civil 3D or InfraWorks are the Assemblies. Each assembly is made up of the structures or the culverts.
Assembly_Culvert_Structure.png

When you click on Structure, you’ll see the three different components that make up the structures: Surface Structure, Underground Structure, and Grates or Covers. The Infrastructure Parts Editor has some parts already created that you can start with or you can create your own using Inventor or Inventor LT.

Various_Parts_Sample.png

Sample of Surface Structures

As you can see in the previous image, if none of the predefined shapes work for you, you can create a new shape template and import a .ipt or a .iam file from Inventor.

Additionally, when adding sizes to the different structures, there is an option to export to and import from Microsoft Excel. This should make editing the sizes much easier!

Export_to_Excel.png

Export to Excel

Once all the structures have been created, they will then be combined to make the different assemblies. When creating an assembly (depending on the type of assembly being made), you’ll simply select the three different structure components that you want to combine together. There’s also a section to validate the sizes (don’t want to put a 5′ long grate on a 3′ long inlet).

Assembly_Creation.png

Assembly Creation – Drag and Drop

Once all your assemblies are made, you can then publish the catalog out to either InfraWorks or Civil 3D or both at the same time.

Publish_Catalog.png

Publish Catalog

So, what do you think? Are you going to give this a try? Personally, I’m really excited about this tool and it capabilities for creating custom parts in Civil 3D.

 

p.s. It also does pressure network parts:
Pressure_Network_Parts.png

Things are a bit different this year with how classes will be chosen for Autodesk University 2017, you get a say in it! All the proposed classes are up on the Autodesk website for you, yes you, to vote on! Is there a class you really want to see this year? Go find it and vote it up. The voting isn’t the only method that will be used to determine a class, but it will be one factor that is looked at when choosing the classes.

If you would like to see me at AU this coming year, feel free to vote for my classes. Just go to the AU WEBSITE and do a quick search for the following classes:

Civil 3D Plus – Taking Civil 3D to the Next Level
Storm Water Design: What tools to use and when you should use them
Residential Subdivision Grading – Grading Beyond the Roads
Get Your Style On – Stunning Styles in InfraWorks

 

 

Next Page »